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§ 1. STATEMENT OF THE PROBLEM

" This problem may be broadly stated thus: a homogeneous stream of
a conducting fluid flows past a cylindrical dieletric body containing a
number of straight conductors parallel to the cylinder axis through
which flows eleciric current generating a magnetic field. The velo-
city vector of the stream lies in a plane normal to the cylinder axis.
The velocity field of the stream and the magnetic field distribution
in and around the cylinder are to be determined.
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Fig. 1 Flow diagram

It is assumed in the following that the Hall effect, and the effects
associated with viscosity and thermal conductivity can be neglected,
and that the fluid conductivity o and its density p are constant. We
further assume that all magnitudes depend on x and y only (the chosen
coordinate system is shown in Fig. 1), i.e., the problem is two-di-
mensional, and there are no external electric field sources (E = 0).
.With these assumptions the equations of magnetohydrodynamics [1]
are written as

1
(uV)u=—H§Vp,+B(uXh)><h,

dive=0, Aa= R, uVa,
he = %_ v b= —%
Hm=%, vm=£:e)_ 1.1

Here h is the magnetic field intensity normalized with respect
to the magnetic field characteristic parameter Hy inside the:cylinder,
u is the fluid velocity normalized with respect to the stream velocity
Vy as x = —wo, p is the fluid pressure normalized with respect to
the fluid pressure p; as X = —, and c is the speed of light. The
%x- and y-coordinates are normalized with respect to the cylinder
characteristic dimension ry, which for a circular cylinder is its radius.
We assume that the magnetic Reynolds number Ry > 1, and limit
our analysis to flow patterns in which the perturbations of hydrody-
namic parameters, induced by interaction with the magnetic field,
are small. Then, we can linearize Eqs. (1.1) by letting u =ug+ v,
and p; = pg + p, where p and v are small corrections to the dimension-
less unperturbed stream pressure and velocity, i.e., of a stream flow-
ing past a cylinder in which there is no current. It will be shown (Eqs.
(3. 3)) that the linear approximation holds for N « 1. Linearizing
(1.1), we obtain

— o X curl v=-— V®; + B (u X h) xh,
®o=uy-v+p/ M divv=0, Aa=R_uVa. (1.2)

A similar problem was previously considered in {2]. However,
the expression derived there for the magnetic-field vector potential
does not hold in the neighborhood of the downstream critical point
and moreover, the velocity field of the stream and the pressure dis-
tribution were erroneously calculated.

§ 2. MAGNETIC FIELD DISTRIBUTION

The magnetic field in the stream is defined by the last of Egs.
(1.2), and that within the cylinder by

Aa = — 0 (2.1)

Here 1’ is the given current density distribution across the cylinder
normalized with respect to j, = cHy/27r;. Because of the magnetic
field continuity along the cylinder surface the following conditions
must be satisfied:

a4 = ag, atll/an = adz/an, (2.2)

where n is the unit vector of the outward normal to the cylinder sur-
face, and a; and a, are the vector potentials within the cylinder and
in the stream, respectively. Welook for a, and a, in the form of
series expansions in powers of 1/Rm‘/Z

1 1
al——dlo-l-,l/}?au—kﬁ,mdw—i—- e

1 1
@y = Gy + —==aa + = T (2.9)
m

VEn
Functions a;j and aj (i =0, ...) satisfy equations

Agy; = R up-Vay,, Ag ), = — 8,410, (2.4)
in which 84 is the Kronecker delta.

Noting that for Ry > 1 a magnetic boundary layer is formed in
the stream surrounding the cylinder [3] in which g, ~1 /le/ ?, while
within the latter ¢; ~ 1 and 8/dn ~ 1, we substitute Eqgs. (2.3) into
conditions (2.2) and equate terms of the same order with respect to
1/Rm'/2, From this we obtain the boundary conditions satisfied by
ayj and ay; (1=0,1,2, ...) at the cylinder surface

ay =0, a3 = ayy, @13 = gy, ..., Oay/0n = Bayy/dn,

da5y/0n = Bayy/0n,... .

If the expansions of a; and a, are restricted to their first terms,
the problem of obtaining the magnetic field in the stream and in
the cylinder can be divided into two parts, First, the case of the
inner magnetic field defined by Eq. (2.1) with boundary condition
a; = 0 is solved; then the external field problem, i.e., the fourth of
Egs. (1.2) with the following boundary conditions at the cylinder sur-
face

day/0n = da,/0n (2.6)

is solved.

Let us assume that the inner magnetic field is known and let us
proceed fo solve the external field problem. The potential function
£ and the stream function 7 of the unperturbed fluid flow are known,
i.e.,

Ugx = 0E/8z = an/oy, ugy = 8E/8y = — dn/dz.

The arbitrary constant in the expression of £ is selected so that
the distance between the critical points equals unity, Passing in the
last of Egs. (1.2) to the new variables £ and n, we obtain for a the
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following equation with constant coefficients

8a/0E2 4 8%/9n? = Rpda/dk. (2.7

Let the body and the current distribution across its section be
symmetric with respect to the x-axis. We then have u, * h =0 outside
of the body for y = 0 (n = 0). Since the inner magnetic field problem
is assumed solved, and since the magnitude uy - h = ug 8/07 at the
cylinder surface'is known, for a in the stream we have the follow-
ing botindary conditions:

0aldn |,y = 7 (E),Va — 0 for ]/52
7 (8) = woblug?,
for'(0 <TE < 1), f(§) = 0 for (£ <C0; § > 1).

"2 — oo,

Using these boundary conditions, we obtain a solution of (2.7),

=‘~S i <z—&>>

X Ko (7'” Ve E— z'f) 1(g) g (@.8)
Where K is the MacDonald function.
Since Ry, » 1, we find the asymptotic expression of a from (2. 8)
under the following conditions

R_In>1 O<ECY), BnyYPra>1 ELO),

RuVETA—EP>1  (E>1). @.9)
These conditions imply that a sufficiently narrow region adjoin-
ing the cylinder boundary (~1/Ry, /2y is excluded from our analysis.
With conditions (2.9) satisfied for any &', we have Rpy(if + (£ — £)F »
> 1, and Ky can be replaced by its asymptotic expression. We further
note that in the flow past the cylinder there are at its surface two
critical points, i.e., the upstream and the downstream critical points
at which u = 0. In the neighborhood of the upstream critical point
~ & /2 » and consequently fey ~ 1/§1/2. while in the vicinity
of the downstream point f(£) ~ 1/(1— g)/% We may therefore assume
7(8) =g (B/VE( —E), where the function g(&) is regular along
the segment (0.1). Considering this we derive from (2.8)

—-——2 ex <§Té)x
V=g, P73
y g exp {— Yolty [sin® u + Y FFE— s wpl)
5 [® 4 (§ —sin® up]t

q == —

Xg (sin® u)du.

From (2. 10) we obtain to within terms of order ~1 /R, Y2

9 exp [— R 1 (sin ¥201)%]
0

xR gl V71 sin :0;
for ]/Rmrl sin 10, >1, (2.11)
£ =7y cos Oy, ==y sin ;. (2.12)

We consider the flow past a cylinder of circular cross section with
radius ry having a current-carrying conductor at its axis. In this case

=Yy +Ya(r 4+ r ™ cos 6,

'r|=1/4(r-—-r“1) sin @, g=-1.

In the neighborhood of the cylinder surface we assume r = 1 +
+t(t «1). From (2.11) we obtain the asymptotic expression of a in
the form

1 exp [— R 1*(sin % 8)?]
TR, t sin 1/.0

(VE, tsin0>1). (2.18)

For this case.a was calculated from Formula (2. 8) with the aid
of a computer. The results are shown on Figs. 2~4. The variation
of hg with increasing radial distance from the cyhnder surface is shown
on Fig. 2 for several values of 6, and for Ry = 2+ 10%. The magnetic
field lines plotted on Figs. 3 and 4 show the progressive clongation
of these with increasing Rm in the form of a wake downstream of
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Fig. 2. Variation of the mag-
netic field with radial distance
in the flow past a circular cyl-
inder for various 6, and for

Ry =2-10%

the cylinder; however, the field intensity in that region is low: b ~
~1/Rm/?, This can be readily demonstrated by assumning n = 0 in
(2.10). The computations of « have also shown that forr = 1, a(1, 6) ~
~ llRm1 2 everywhere, including the downstream critial point; hence
expansions (2. 3) are valid for any r and 6,

§3. VELOCITY FIELD PERTURBATIONS

We pass now to the investigation of the velocity field, and we
introduce the stream function ¢. Then
V=09 /0y, v =—00/0z

and for & we have from the first of Eqs. (1.2)

p B A 9D, | da Ba
28 T ot =ug on TS 3E o
g P
, (a3
-3 S ug (ag) d5>. (3.1)
—C0

We begin with the analysis of the cylinder boundary layer,

a) Flow in the boundary layer. For R, * 1 we have within the
boundary layer (An/Ag) ~1/Ry < 1, and the first term on the left-
hand side of (3.1) can be neglected. Hence

oy _ 1 a0,
T ug? A

%0 o
GE om -

(3.2)
Neglecting terms on the order of ~1/R;,, we introduce 1/u§

for 8/an in (3.2), and using the fourth of Eqs. (1.2) we integrate
(3.2), finally obtaining

N
M Do | N?[day? ‘®y N2 (da\?
= u—ow’z“(m)’ ‘P=S[7§+7(5ﬁ”d”’
11

NeM?
p=— "y k2. (3.3)

b) Flow in the neighborhood of the downstream critical point,
Equations (8. 3) derived above do not hold in this region. Because of
this we apply the curl operator to the first of Egs. (1.2), integrate
the obtained equation along the streamlines, and find

curl y=r (F=p S —u%(hV) (o x b, d, ). (3.4)

E=r]

In a sufficiently small neighborhood of the downstream critical
point the cylinder surface may be assumed flat. We introduce a local
coordinate system with its origin at the critical point and the x- and
y-axes, respectively, normal and tangent to the cylinder surface, In
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this coordinate system the function F may be represented for r =
=(x* +y2)1/2 — 0 in the form

Y
= Fy, 3.5
F=TyThe .5
where F is the value of F at the downstream critical point,
¥

A———=
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Fig. 3. Magnetic field lines in the flow past a
current-carrying circular cylinder for Ry =
=92 . 10%,

Thus, in the downstream critical~point neighborhood the function
¢ must satisfy

Yy -
Mp=TT Fo (3.6)
and the boundary conditions
Blo—rfyn = Plom ),z = 0- (8.7

Expanding the right-hand side of (3.6) and ¢ into Fourier series
and substituting into (3.6), we obtain

F
lpzTorglnrsinZO—— ];0 r?x
sin 2 (2k - 1) 0
X Z W‘M —+ apr? sin 20, (3.8)

. The last term of (8. 8) relates to the unperturbed flow, and ay ~
~ 1, We will estimate F, for the case of flow past a circular cylinder
with a current-carrying conduit at its axis. We write the explicit
expression of Fy

Fo=128 S Lor (6) ctg 0 — by, ()] d0 ~ /' F, N*
0
(o = b, [y (3.9)

It follows from (3. 8) that for any Fy there exists a neighborhood
of the downstream critical point in which the linear approximation
does not hold (the additional term to the unperturbed stream function
Uy = aor sin 26 becomes ¢y, and the dimension of this neighbor-
hood for Ry Y2\ > 1 is not less than 1* ~ l/R,m1 Z expression (3.6)
is strictly applicable when r « 4.

c) Velocity field distribution outside the boundary layer. The
solution of Eq. (8.1) can be presented in the form

1
Y =% S In [(E—E) +(n—1)lo@E, ) d¢ dy’

( 180y da da
mmug‘z an + aE 5“_)

In the boundary layer around the cylinder and in the narrow down-
streamn wake, the function w differs in fact from zero, i.e., when

IEL TR 1/Rm1 2, Taking this into account, and noting that w(§' ,
-n") = ~w(&',n") for ¢ whenn > n; we obtain the expression

nQ_g(E)dE
v e i

gEY=I1+ I,

x> . a@ 00
n o> . - oa
I = S ug 07]' dT], Iz—B S ’I] 35 an, d'r]
—CQ .

We will estimate integrals I; and I,. Since u, remains virtually
unchanged across the boundary layer,

by oM,
— . o .,
Lz uy™ S " Gy =
—o0
i Do (£, 0) N2

1 , ’
— _m_gnfbodn ~—mno~ﬁg1(i)-

In the boundary-layer approximation we have o*a/on® = Ry, 0a/0¢
from (2.7), hence

(oo}
N2 ,a(aaz,
1= § vy (o) o=

: Finally we obtain
g(€)= N (E) ]V Rm,

where gg(£) is a vector function independent of N and Ry,. Conse-
quently the perturbations of the velocity and pressure fields outside
the boundary layer are on the order of NZ/le/z, and not of NZ, as
derived in [2].

Let us discuss briefly the computation of the velocity field in [2].
Equation (3.1) can be written as

o 0% D da da\
3 Top = — o= Y) <°’1=” - —Bus’ 57 o/
We now present ¥ in the form
1
b=—ggX

00 T
X S S InyYr24r'2—2rr" cos (0 —0) 0, (v, 0')r" dr’ db.
0 —n

Assuming that

o1 = 5 (0) 8 (r — 1) (mo - ogoml(r, 9) dr)
1

(this is admissible because in the narrow boundary layer around the
cylinder the function w, differs from zero), from¥ we obtain the ex-
pression

T
v=—57 \ I VI+r —3rcos (0— 07 wo(0)d0",
1

from which it is possible to derive

r—cos (6 — &)
14 r2—2rcos (6 —

7 wo (8') 46"

If in the last expression we formally set r = 1, we obtain Vg/r = =
=0, i.e., we obtain the result on which all computations of Section

4
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Fig. 4. Magnetic field lines in the flow past a
current-carrying circular cylinder for Ry, =
=2.10%,

4 of [2] were based. This, however, is precisely what cannot be done,
because ¥ represents the potential of an ordinary layer, and 9/0r is
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discontinuous at r = 1, Hence

lim 9P/or =1000(0), T. e. vy| 0.
r—>1+0 r=1

The author is grateful to A, I. Morozov for his constant interest
in this work.
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