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w 1. STATEMENT OF THE PROBLEM 

This problem may  be  broadly stated thus: a homogeneous stream of 

a conducting fluid flows past a cy l indr ica l  d ie le t r i c  body containing a 
number of straight  conductors pa ra l l e l  to the cyl inder  axis through 

which flows e lec t r i c  current genera t ing  a m a g n e t i c  field.  The velo-  
c i ty  vector  of the s t ream l ies  in a p lane  normal  to the cyl inder  axis. 

The ve loc i ty  f ield of the s t ream and the m a g n e t i c  f ield distribution 

in and around the cyl inder  are to be determined.  

Z 

Fig.  1 Flow d iagram 

It is assumed in  the following that  the Hal l  effect ,  and the effects 

associated with viscosity and the rmal  couduc t iNty  can  be neg lec ted ,  
and that the fluid conduct iv i ty  o and its density p are constant.  We 
further assume that  a l l  magni tudes  depend on x and y only (the chosen 

coordinate  system is shown in Fig. 1), i . e . ,  the problem is two-d i -  
mensional ,  and there are no external  e lec t r ic  f ie ld  sources (E = 0). 
W i t h  these assumptions the equations of magnetohydrodynamies  [1] 
are wri t ten as 

t 
(uV) u = - - ~ , s V p j + ~ ( u x h ) x h ,  

div u = 0, Aa = R m u V a ,  

Oa Oa 
h x =  Oy ' h v = - -  0--~" 

Ho ~ P Vo*" 
= BmN~,  N ~" -  4~xpVo ~ , M ' =  Po ' 

Voro r 
R,~ = v-~-' ~ = ~ ) .  ( i . i )  

Here h is the m a g n e t i c  f ield intensi ty normal ized  with respect  
to the magne t i c  f ie ld  charac ter i s t ic  parameter  H0 inside t h e  cyl inder ,  
u is the fluid ve loc i ty  normal ized  with respect  to the s t ream ve loc i ty  
V~ as x ~ --~o, Pi is the fluid pressure normal ized  with respect  to 
the fluid pressure P0 as x "~ --~o, and c is the speed of l ight.  The 

x- and y-coordinates  are normal ized  with respect  to the cyl inder  
character is t ic  d imension r 0, which for a c i rcular  cyl inder  is its radius. 

We assume that  the m a g n e t i c  Reynolds number R m >> 1, and l i m i t  
our analysis  to flow patterns in  which the perturbations of hydrody- 

namic  parameters ,  induced by in te rac t ion  with the magne t i c  field,  
are smal l .  Then, we can  l i nea r i ze  Eqs. (1.1)  by le t t ing  u = u 0 + v, 

and Pi =Pm + P, where p and v are sma l l  correct ions to the d imens ion-  
less unperturbed s t ream pressure and ve loc i ty ,  i . e . ,  of a s t ream flow- 
ing past a cyl inder  in which there is no current.  It wi l l  be shown (Eqs. 
(3.3)) tha t  the l inear  approximat ion  holds for N z << 1. Linear iz ing 
(1.1) ,  we obtain 

--Uo x curl v - - - - - - V ( D o + ~ ( u o x h )  x h ,  

(Do = Uo-V -~- p / M ~, div v = 0, Aa = RmnO. Va .  (1.2)  

A s imi la r  problem was previously considered in [2].  However, 
the expression derived there for the magne t i c - f i e l d  vector poten t ia l  

does not hold in the neighborhood of the downstream c r i t i ca l  point 
and moreover,  the ve loc i ty  f ield of the s t ream and the pressure dis- 
tr ibution were erroneously ca lcu la ted .  

w 2, MAGNETIC FIELD DISTRIBUTION 

The magne t i c  f ield in the s t ream is defined by the las t  of Eqs. 
(1.2) ,  and that  within the cyl inder  by 

Aa = - -  io. (2.1) 

Here i ~ is the g iven  current densi ty distribution across the cyl inder  

normal ized  with respect  to J0 = cH0/27rro. Because of the magne t i c  
f ie ld  cont inui ty  along the cyl inder  surface the fol lowing condit ions 
must  be satisfied: 

a i = as, Oat~On = Oa~/On, (2 .2)  

where n is the unit vector  of the outward normal  to the cyl inder  sur- 

face,  and ar and a z are the vector  potent ia ls  within the cyl inder  and 
in the s t ream, respect ive ly .  Welook for a I and as in the form of 
series expansions in powers of 1 / R m t / z  

1 1 
~ ,  = .10 + ~ ~lx + n,-~ ~ + . . . .  

1 t 
a~. = a~ + ~ - ~  ~.1 + ~ a~. + . . . .  (2.3) 

Functions aii and a2i (i = 0, . . .  ) satisfy equations 

A%i  = RmUO. Vazi,  Ant i  = - -  ~iO i~ , (2 .4)  

in which 5i0 is the Kroneeker de l ta .  

Noting that  for R m >> 1 a magne t i c  boundary layer  is formed in 
the s t ream surrounding the cyl inder  [3] in which a z ~ 1/Rm l/z,  whi le  
wi thin  the la t ter  a I ~ l and ~/0n ~ 1, we substitute Eqs. (2.3) into 
conditions (2 .2)  and equate  terms of the same order with respect  to 
1/Rrn I/z.  From this we obtain the boundary condit ions satisfied by 

a l l  and azi (i  = 0 , 1 , 2  . . . .  ) at  the cyl inder  surface 

aio : O, a n  = ~ o ,  a t2  = a ~ l  . . . . .  Oa2o/On ~ OaielOn, 

Oa2t/On = Oan[On . . . . .  

If the expansions of a t and a z are restr icted to their  first terms, 
the problern of obtaining the magne t i c  f ie ld  in the stream and in 
the cyl inder  can  be divided into two parts.  First, the case of the 
inner magne t i c  f ie ld  def ined by Eq. (2 .1)  with boundary condi t ion 
a 1 = 0 is solved; then the ex te rna l  f ie ld  problem,  i . e . ,  the fourth of 
Eqs. (1 .2)  with the fol lowing boundary condit ions at  the cyl inder  sur- 
face 

OR~On = Oat~On (2 .6)  

is solved. 

Let us assume that  the inner magne t i c  f ie ld  is known and l e t  us 
proceed to solve the ex te rna l  f ie ld  problem.  The po ten t i a l  function 

and the s t ream function 7/ of the unperturbed f luid flow are known, 
i . e . ,  

uox = 0~/0x = O~/Oy, uo~ = O~/Oy = - -  O~llOx. 

The arbitrary constant  in  the expression of ~ is se lec ted  so that 
the distance be tween the c r i t i c a l  points equals  uni ty .  Passing in the 
las t  of Eqs. (1 .2)  to the new var iables  ~ and ~, we obtain for a the 
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following equation with constant coefficients 

aZa/O~ ~ + a~a/aff ~ = Bmaa/O~. (2.7)  

Let the body and the current distribution across its section be 
symmetric with respect to the x-axis .  We then have u 0 ' h = 0 outside 
of the body for y = 0 (~ = 0). Since the inner magnetic  field problem 
is assumed solved, and since the magnitude uo �9 h = u2o ~/0~ at the 
cylinder surface'is known, for a in the stream we have the follow- 
ing bofindary conditions: 

aa/a~l[~=o = ] (~),Va --~ 0 for t / ~  ~ + ~l ~ --* ~ ,  

] (~) = Uo "h/u0%=0 

f o r ( O < ~ < t ) , / ( ~ ) = O  f o r ( ~ < O ;  ~ > t ) .  

Using these boundary conditions, we obtain a solution of (2.7), 
i . e . ,  

1 

x 

Where K 0 is the MacDonald function. 
Since R m >> 1, we find the'asymptotic expression of a f rom(2 .8)  

under the following conditions 

R , ~ t n l > ~ l  (0<~<I), R m g n ~ + ~ ' ~ > ~ t  (~<0), 

R m l / n e + ( t - - ~ ) e ~ > t  (~>l). (2.9) 

These conditions imply that a sufficiently narrow region adjoin- 

ing the cylinder boundary ( ~ l / R m l / z )  is excluded from our analysis. 
With conditions (2.9) satisfied for any C,  we have Rm(r~ + (g - ~)2 >> 
>> 1, and K s can be replaced by its asymptotic expression, We further 
note that in the flow past the cylinder there are at its surface two 
critical points, i . e . ,  the upstream al~d the downstream critical points 
at which u = 0. In the neighborhood of the upstream critical point 
Usy ~ g 1/2 and consequently ] (g)  ~ 1/~ l /z ,  while in the vicinity 
of the downstream point ](g)  ~ 1 / ( 1 - g ) ~ / z .  We may therefore assume 
] (g) = g (~)/l/~ (1 - -  ~), where the function g(g) is regular along 
the segment (0.1). Considering this we derive from (2.8) 

a = -- ~ e x p  • 
]/r~R m 

I/s~ I 
X I exp {-- /"R m [sin" u -k l / n  ~ + (~- -  sin" u)"- l} 

; [~1" + (4 -- sin"- u)"] V" X 

• (sin e u) du. 

From (2.10) we obtain to within terms of order ~ I / R  m ~/2 

2 exp [ - -  Rmrl (sin r/"O0~" ] 

a .~  ~ g (0) "I/'~ sin ~/~.0~ 

for l f R ~ r l  sin ~/"0t ~ 1, (2 .11)  

= r~ cos 0~, ~1 = r~ sin Or. (2.12) 

We consider the flow past a cylinder of circular cross section with 
radius r0 having a current-carrying conductor at its axis. In this case 

= 1/" ~ 1/4 ( r  @ r - I )  COS O, 

~1 = ~/,~ (r -- r -~) sin 0, g = -- t. 

In the neighborhood of the cylinder surface we assume r = 1 + 
+t (t << 1). From (2.11) we obtain the asymptotic expression of a in 
the form 

1 exp [ - -  Bmt" (sin ~AO) ~1 
a =  /?m t sin '/cO (V-R~m t sin '/,.0 >~ ~). (2.13) 

For this casea  was calculated from Formula (2.8) with the aid 
of a cmnputer. The results are shown on Figs. 2-4 .  The variation 

of h 0 with increasing radial distance from the cylinder surface is shown 
on Fig. 2 for several values of O, and for g m 
field lines plotted on Figs. 3 and 4 show the 
of these with increasing R m in the form of a 

N 

Fig. 2. Variation of the mag-  
netic field with radial distance 
in the flow past a circular cyl-  
inder for various 0, and for 

R m = 2 . 1 0  2 . 

= 2 �9 10 ~. :[he magnetic 
progressive elongation 
wake downstream of 

the cylinder; however, the field intensity in that region is low: h 
t / R m  l/z,  This can be readily demonstrated by assuming 7? = 0 in 

(2.10). The computations of a have also shown that for r = 1, a(1, O) ~ 
~ 1/Rrn 1]2 everywhere, including the downstream erit ial  point; hence 
expansions (2.3) are valid for any r and O. 

w VELOCITY FIELD PERTURBATIONS 

We pass now to the investigation of the velocity field,, and we 

introduce the stream function ~0. Then 

Vx=O4/Oy, v y = - - O 4 / O z  

and for ~ we have from the first of Eqs. (1.2)  

O'-~p Oe 4 t a% Oa O~ 
0~" § OTI ~ -- uo~ 0~1 + ~ ~ 0~1 

We begin with the analysis of the cylinder boundary layer. 
a) Flow in the botmdary layer.  For ~ >> 1 we have within the 

boundary layer (&~/Ag) 2 ~ 1/R m << 1, and the first term on the left-  
hand side of (3.1)  can be neglected. Hence 

0~4 t Oq)o Oa Oa (3,2) 
on" - Yo" ~ + ~ o4 on 

Neglecting terms on the order of ~ I / R  m, we introduce 1/u~ 
for 0/0~ in (3.2) ,  and using the fourth of Fzls~ (1.2)  we integrate 
(3.2), finally obtaining 

n 
o4 . o  N /oo , l , o o , .  

0 

N" M'  
p = - -  ~ h", (3 .3)  

b) Flow in the neighborhood of the dowmtream critical point. 

Equations (3.3) derived above do not hold in this region. Because of 
this we apply the curl operator to the first of Eqs. (1.2),  integrate 
the obtained equation along the streamlines, and find 

c U r L z v = F  ( F = ~  I -~0t (hV)(uoxh)  d/v). (3.4) 

In a sufficiently small  neighborhood of the downstream critical 
point the cylinder surface may  be assumed fiat. We introduce a local 
coordinate system with its origin at the critical point and the x- and 
y-axes,  respectively, normal and tangent to the cylinder surface. In 
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this coordinate system the function F may  be represented for r = 

= (x 2 § y 2 / / 2  _ 0 in the form 

Y F (3 .5)  

where F 0 is the va lue  of F at  the downstream c r i t i c a l  point .  

2 
2"  

Fig.  3. Magnet ic  f ie ld  l ines in the flow past a 
current-carrying c i rcular  cyl inder  for R m = 

= 2 �9 10 2. 

Thus, in the downstream c r i t i c a l -po in t  neighborhood the function 

must  satisfy 

Y " (3 .6)  A*=71Z :0 

and the boundary conditions 

I~ I s = , / :  = r l s= - , l :=  ~ o.  (3 .7)  

Expanding the r ight -hand side of (3 .6)  and ~ into Fourier series 
and substituting into (3.6) ,  we obtain 

= -~-  r"- In r sin 20 - -  : x 

sin 2(2k + t) O 
x ~ (2k ~ - 1 ) ~  ~ 5 - :  i l  + ~o:  sin 20. ( 3 . 8 )  

The last term of (3 .8)  relates  to the unperturbed flow, and a 0 

1. We wi l l  e s t ima te  F 0 for the case of flow past a c i rcular  cyl inder  
with a current-carrying condui t  at its axis.  We write the exp l i c i t  

expression of F0 

Yo = 213 i [hot (0) ctg 0 - -  ho/" (0)1 dO ~ V - ~  n~ 
o 

(hOe = hr Ir=I)' (3.9) 

It follows from (3.8) that  for any F0 there exists a neighborhood 
of the downstream c r i t i c a l  point in  which the l inear  approximat ion  
does not hold (the addi t iona l  term to the unperturbed s t ream function 
r = a0 r~sin 20 becomes r and the dimension of this neighbor- 
hood for Rm ~/~ N z >> 1 is not less _than r* ~ 1/Rm ~/~ expression (3.6) 
is str ietIy appl icab le  when r << r*). 

c) Ve loc i ty  f i e ld  distr ibution outside the  boundary layer .  The 
solution of Eq. (3 .1)  can  be presented in the form 

' l  
�9 = 4~- In [(~ - -  ~,)o + (n - -  n'F-] ~o (~', ,f) d~' d n' 

o) 1 0@o Oa Oa \ 

In the boundary layer  around the cyl inder  and in  the narrow down- 
stream wake,  the function w differs in fac t  from zero, i . e . ,  when 
11 -< rio ~ 1/Rm t/2. Taking this into account ,  and noting that  w(U , 

- r i ' )  = - w ( U , r i ' )  for ~ when ri >> ~0 we obtain the expression 

g (~') = I~ + h ,  

~l" OOo ~ Oa Oa 

- - c o  - - o o  

We wil l  es t imate  integrals  11 and 12. Since u 0 remains v i r tua l ly  
unchanged across the boundary layer ,  

11 ,~ Uo_~ in= ~ ~ 00o ~l" y ~ -  dn' = 
- - c o  

1 ~ r (~', O) N'-' 
= - ~ _ ~ o  ~0an "~ - ~ o ~  ~ - ~  g,(r 

In the boundary- layer  approximat ion  we have  823/N72 = RmOa/8g 
from (2.7), hence  

N ~" ~ 0 [Oa\~ d 
h = -ff  n" & I~-~,l n" = 

- - c O  

= -- N~ d~l' ~ -- ~ go. (~'). 
0 

Fina l ly  we obtain 

g ( r  N~go (~') ]V-Rm, 

where g0(g) is a vector  function independent  of N and R m. Conse- 
quently the perturbations of the ve loc i ty  and pressure f ie lds  outside 

the boundary layer  are on the order of N2/Rm ~/~, and not of N ~, as 
derived in [2]. 

Let us discuss br ief ly  the computa t ion  of the ve loc i ty  f ie ld  in [2]. 
Equation (3 .1)  can be wri t ten as 

0~ 0~ / 0| Oa Oa \ 
~+~:=-~r (~ ,y)  t ~~ 

We now present ~ in the form 

1 

X ~  i ln]/r~-+r'*---2rr'eos(O--O')c%(r',O')r'ar'dO: 
0 - - ~  

Assuming that  

m, = o0 (0) 6 (r - -  t) 

s o  

(o0= Io, r 0/") 
1 

(this is admissible  because in the narrow boundary layer  around the 
cyl inder  the function o~ differs from zero),  f rom~ we obtain the ex-  

pression 

'i ~ = - - ~ "  l n ] / l q - r ~ - - 2 r c o s ( 6 - - 0  ") o)o(6')dO', 

from which it  is possible to derive 

01~ t ~ r - -  cos (0 - -  0') 
v~ = - -  ~ = - ~  a I ~- r~ - -  2r cos (0 - -  0') COo (0') dO'. 

If in the las t  expression we formal ly  set r = 1, we obtain VO/r = I = 
= 0, i . e . ,  we obtain the result  on which a l l  computat ions  of Sect ion 

~ :o -~ ~:~ ::-: 

/ / 2 "  
g.gS./O-Z 0./d/0-2 

Fig.  4. Magnetic  f ie ld  l ines in the flow past a 
current -carrying c i rcular  cyl inder  for R m = 

= 2 �9 102. 

4 of [2] were based. This, however,  is precise ly  what cannot  be done, 

because ~ represents the po ten t i a l  of an ordinary layer ,  and O#/8r is 
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discontinuous at r = i. Hence 

lira Ol~/Or=lhOlo(O), T. e. vol =#0. 
r-->l~-O r ~ l  
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